
Advanced Mathematical Models & Applications

Vol.8, No.2, 2023, pp.125-139

A STUDY OF A NEW GENERALIZED BURGERS’ EQUATION:
SYMMETRY SOLUTIONS AND CONSERVATION LAWS

Lijun Zhang1,2, ID Samson Kwizera1, ID Chaudry Masood Khalique2,3∗

1Department of Mathematics, Shandong University of Science and Technology, Shandong, China
2Material Science, Innovation and Modelling Research Focus Area, Department of Mathematical
Sciences, North-West University, Mmabatho, South Africa
3Department of Mathematics and Informatics, Azerbaijan University, Azerbaijan

Abstract. In this work, we study a general form of Burgers’ equation with two variable coefficients depending on

space and time. Using symmetry analysis we determine certain coefficient functions for which the corresponding

nonlinear partial differential equations have Lie point symmetries. For each such equation we construct its

conservation laws by the use of conservation theorem owing to Ibragimov. The importance of conversations laws

is also mentioned. Moreover, group invariant and power series solutions are obtained for some special cases of the

equation under study.

Keywords: Generalized Burgers’ equation, Lie point symmetry, self-adjointness, conservation laws, conserved

vector.

AMS Subject Classification: 35B06, 35L65, 37J15, 37K05.
∗Corresponding author: Chaudry Masood Khalique, Material Science, Innovation and Modelling Research

Focus Area, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Mmabatho, South

Africa, Tel.: +27183892009, e-mail: Masood.Khalique@nwu.ac.za

Received: 25 March 2023; Revised: 8 May 2023; Accepted: 1 June 2023; Published: 3 August 2023.

1 Introduction

It is widely believed that many problems of real-world are actualized by nonlinear partial dif-
ferential equations (NLPLDLs). See for example, Adeyemo et al. (2023); Alhasanat (2023);
Babajanov & Abdikarimov (2022); Simbanefayi et al. (2023); Liu et al. (2023); Ay & Yasarv
(2023); Demiray & Duman (2023); Farajov (2022); Zhu (2022); Rani et al. (2022); Zhang
(2022). A generalized (3+1)-dimensional nonlinear potential Yu-Toda-Sasa-Fukuyama equation
of engineering and physics was studied in Adeyemo et al. (2023). This equation has wide applica-
tions, particularly in plasma physics and fluid dynamics. In Babajanov & Abdikarimov (2022),
the authors studied the Zakharov-Kuznetsov equation which models the vortices in geophysical
flows and has appeared in many areas of physics, applied mathematics and engineering. The
sixth-order Boussinesq equation which has double dispersion governs the motion of waves on
water that has a stress surface and was investigated in Farajov (2022).

Burgers’ equation, sometimes called Bateman-Burgers equation is a NLPLDL that occurs in
different field of applied mathematics, such as traffic flow, fluid mechanics, gas dynamics and
non-linear acoustics. This equation was initially instigated by Harry Bateman during 1915 in
Bateman (1915) and thereafter investigated by J.M. Burgers in 1948.
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Burgers’ equation was acquired as a consequence of incorporating linear diffusion alongside
nonlinear wave motion. It is the easiest model for examining amalgamated effects of nonlinear
diffusion and advection (Burgers, 1948; Whitham, 1999). In this study, we investigate the
generalized variable coefficients Burgers’ equation (gvcB-eqn)

f(t)ut + g(t, x)uux − uxx = 0. (1)

Here u(t, x) describes density variable, functions f(t) and g(t, x) are non-zero functions, and
g(t, x)uux defines the time dependent and space dependent non-linear convection reactions Cao
& Zhang (2020). If there is no diffusion, the term uxx is dropped, and the equation (1) reduces
to

f(t)ut + k(t, x, u, ux) = 0.

Moreover, when f(t) = 1 and k = a(u)ux we get

ut + a(u)ux = 0.

This is named as in-viscid Burgers’ equation (Freire & Sampaio, 2014; Freire, 2012). This
equation is a particular case of (1) when there is no diffusion, g = 1 and a(u) = u.

In nature, conservation laws often represent physical conserved quantities, including energy,
mass, angular and linear momentum, together with charge and additional constants of motion
Olver (1993). Theory of conservation laws for NLPLDLs plays an indispensable part in examin-
ing their uniqueness, global existence and stability of solutions. The integrability of NLPLDLs
is dependent on the number of conservation laws it possesses. Another vital facet of conserva-
tion laws is that they are invaluable in numerical integration of NLPLDLs (Bluman & Kumei,
1989; Khalique & Simbanefayi, 2021; Jamal, 2019; Bruzon et al., 2021; Bruzon et al., 2022;
Khalique & Simbanefayi, 2021; Chulián et al., 2020). In the literature, one can find several
techniques for computing conservation laws. In 1918, Noether founded the astonishing theo-
rem, which states that every single conservation law belonging to a system, emerging from a
variational principle, originates from an associated symmetry effect Noether (1918). Neverthe-
less, the applicability of Noether’s was limited to systems that had a Lagrangian formulation
(Ibragimov, 2006, 2007). For the sake of constructing conservation laws for systems without
Lagrangians, researchers developed several generalities of Noether’s theorem. See for example
(Olver, 1993; Steudel, 1975; Ibragimov & Kolsrud, 2004; Kara & Mahomed, 2006; Ibragimov,
2007) and the references therein. In Kara & Mahomed (2006) the authors introduced the idea
of partial-Lagrangian along-with associated Noether-type symmetries with conservation laws.
The multiplier approach is described in Steudel (1975); Olver (1993). In Ibragimov (2007) a
straightforward method for constructing conservation laws for systems was established. It is
widely known, that all local conservation laws possess the structure

DtF (t, x, ur1) +DxG(t, x, ur2) = 0 (2)

with Dt, Dx being the total differential operators and ur1 ur2 denote all possible derivatives u
Ibragimov (1999).

We start our study by computing point symmetries of gvcB-eqn (1) and thereafter we cal-
culate its conservation laws. The remaining study is set out as follows. Section 2 contains
symmetries of (1) for certain variable coefficients f and g.

In Section 4, we use a theorem due to Ibragimov. In Section 3, we consider the special case
of the gvcB-eqn (1), present some invariant solutions and determine the conservation laws for
such equations. We end the study by some discussions and conclusions which we give in Section
5.
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2 Symmetries of gvcB-eqn

We contemplate the most broadest point transformations Lie groups that do not change the
gvcB-eqn (1).

Firstly, we examine a 1-parameter infinitesimal transformations group

t→ t+ ετ(t, x, u), x→ x+ εξ(t, x, u), u→ u+ εη(t, x, u) (3)

with vector field

X = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
. (4)

By appealing to the second prolongation (see Olver (1993))

pr2X = X + ρ1
∂

∂ut
+ ρ2

∂

∂ux
+ ρ11

∂

∂utt
+ ρ12

∂

∂utx
+ ρ22

∂

∂uxx
(5)

to gvcB-eqn (1), we realize that the coefficient functions ξ(t, x, u), τ(t, x, u) and η(t, x, u), for
particular values of f(t) and g(t, x) must satisfy the symmetry condition[

τft(t)ut + τgtuux + ηgux + ρ1f(t) + ρ2gu− ρ22
]
uxx=f(t)ut+guux

= 0 (6)

with

ρ1 = ηt − τtut + ηuut − ξtux − τuu2t − ξuutux,
ρ2 = ηx − τxut + ηuux − ξxux − τuutux − ξuu2x,
ρ22 = ηxx + 2ηxuux + ηuuxx + ηuuu

2
x − 2ξxuxx − ξxxux − 2ξxuu

2
x − 3ξuuxuxx

− ξuuu3x − 2τxutx − τxxut − 2τxuutux − τuutuxx − 2τuuxutx − τuuutu2x.

Invoking the values of ρ1, ρ2 and ρ22 in (6), we get the determining equations

τu = 0, τx = 0, (7)

ξu = 0, (8)

ηuu = 0, (9)

τgtu+ ξgxu+ ηg − ξtf(t)− 2ηxu + ξxgu+ ξxx = 0, (10)

τft(t)− τtf(t)− τxgu+ 2ξxf(t) = 0, (11)

ηtf(t) + ηxgu− ηxx = 0. (12)

Equations (7) give
τ = τ(t), (13)

where as the equation (8) gives
ξ = ξ(t, x). (14)

The equation (9) leads to
η = P (t, x)u+Q(t, x) (15)

for arbitrary P , Q. Substitution of η in (10) gives

τgtu+ ξgxu+ Pgu+Qg − ξtf(t)− 2Px + ξxgu+ ξxx = 0 (16)

and separating (16) on u, we get

u : τgt + ξgx + Pg + ξxg = 0, (17)

u0 : Qg − ξtf(t)− 2Px + ξxx = 0. (18)
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We substitute the value of η in (12) and get

Ptf(t)u+Qtf(t) + Pxgu
2 +Qxgu− Pxxu−Qxx = 0 (19)

and separating (19) on u yields

u2 : Px(t, x) = 0, (20)

u1 : Pt(t, x)f(t) +Qx(t, x)g(t, x)− Pxx(t, x) = 0, (21)

u0 : Qt(t, x)f(t)−Qxx(t, x) = 0. (22)

From equations (17) and (20) we find that

ξ(t, x) =
1

g
G(t)− 1

g

[
τ(t)

∫
gtdx+ P (t)

∫
gdx

]
. (23)

Considering the equations (18) and (20), we have

Q =
ξtf − ξxx

g
(24)

and using equation (21) we find that

Pt = −Qxg
f
. (25)

From (20) we deduce that P = P (t), then we have from equation (25) that (Qxg)x = 0 as the

first condition. Now equation (11) gives us ξx = f(t)
2

(
τ(t)
f(t)

)
t

which leads to

ξxx = 0 (26)

as the second condition. From equation (22), we get Qtf − Qxx = 0 as the third condition.
Finally, from equation (11), we obtain

τ = f

(∫
2ξx
f
dt+ C1

)
. (27)

Equation (21) gives

Qx = − f(t)

g(t, x)
P
′
(t) (28)

and

Qxx = P
′
(t)f(t)

gx
g2
, (29)

which leads to

Q = −P ′(t)f(t)

∫
1

g
dx+ S(t) (30)

with S(t) an arbitrary function. Equations (29) and (22) lead to

Qt = P
′
(t)
gx
g2
. (31)

Differentiate (30) with respect to t. We get

Qt = −P ′′
∫
f

g
dx− P ′

∫
[ftg − fgt]

g2
dx+ S

′
(t). (32)
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From (31) and (32), we obtain

P
′′
(t)

∫
f

g
dx+ P

′
(t)

[∫
(ftg − fgt)

g2
dx+

gx
g2

]
− S′(t) = 0. (33)

Finally, the equation (24) leads to

ξt =
g

f
Q(t, x). (34)

For given functions f and g, and splitting equation (33) on x yields S(t), P (t). After replacing
S and P in (30), we may find Q(t, x). Substituting Q(t, x) in (34) we can find ξ(t, x) after
integration. The function τ(t) can now be obtained from equation (27). Thus, the infinitesimal
symmetries of the gvcB-eqn (1) can be obtained by taking account of the three given conditions.

Let us take P and Q as constants. Then equations (21) and (22) are satisfied. The equation
(11) gives

ξx =
1

2
f

(
τ

f

)
t

= M(t), (35)

ξ = xM(t) +N(t), (36)

g =
1

Q
f(t)

(
M ′(t)x+N ′(t)

)
(37)

for some functions M and N . Similarly, from the equation (17), we get

−P = τ(t)
gt
g

+M(t) +
(
xM(t) +N(t)

)gx
g
. (38)

With the help of equation (37), we have

gx
g

=
(g/f)x
g/f

=
M ′

xM ′ +N ′
(39)

and
gt
g

=
gt/f

g/f
=

(g/f)t + (g/f) (f ′/f)

g/f
=
xM ′′ +N ′′

xM ′ +N ′
+
f ′

f
. (40)

For M ′(t) 6= 0, we substitute g(t, x) and its derivatives in (38) to get that

−P = τ

(
xM ′′ +N ′′

xM ′ +N ′
+
f ′

f

)
+M + (Mx+N)

M ′

xM ′ +N ′

=
(τM ′′ +MM ′)

M ′

x+
τN ′′ +NM ′

τM ′′ +MM ′

x+
N ′

M ′

+ τ
f ′

f
+M

or

−P =
τM ′′

M ′
+ 2M + τ

f ′

f
(41)

with

τ =
M ′ (N ′M −NM ′)
N ′′M ′ −N ′M ′′

. (42)

From equations (35) and (41), we get

−P =
τM ′′

M ′
+ τ ′, (43)

which leads to

τ = −P
(
M + C

M ′

)
(44)
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with P and C being constants. Equating (42) and (44), we have

−PM ′(M +N)N ′′ + PM ′′N ′(M + C)−MM ′2N ′ +NM ′3 = 0. (45)

Then we have

τ = −P
(
M + C

M ′

)
, ξ = xM(t) +N(t), η = Pu+Q.

From equation (35) one has
f ′

f
=
τ ′

τ
− 2M

τ
,

which gives

f(t) = C2τe
−2

∫
M
τ
dt

with C2 a constant of integration. By using the value of τ in the last equation, we have

f(t) = C1

(
C +M

M ′

)
exp

[
2

∫
M ′M

P (C +M)
dt

]
= C1

(
M + C

M ′

)
exp

[
2

P

∫
M

M + C
dM

]
by taking C1 = C2P as a constant and changing the variable. By integration, we get

f(t) = C1

(
M + C

M ′

)(
eM

(M + C)C

) 2
P

(46)

and the equation (37) leads to

g(t, x) =
C1

Q

(
M + C

M ′

)( eM

(M + C)C

) 2

P (
xM ′ +N ′

)
. (47)

Thus, according to the above calculations, we are able to state theorem 1.

Theorem 1. For arbitrary constants P , Q 6= 0, C and with arbitrary functions M(t), N(t),
(with M ′(t) 6= 0) satisfying (45), the functions

τ = −P
(
M + C

M ′

)
, ξ = xM(t) +N(t), η = Pu+Q

define the point symmetry X = τ∂/∂t + ξ∂/∂x + η∂/∂u of the gvcB-eqn (1) provided (46) and
(47) are satisfied.

For the case when M ′(t) = 0, that is, when M is a constant, from equation (37) we have

gx = 0 and thus

(
gx
g

)
x

= 0. By taking P as a constant and considering equation (38), we find

that

g = C2exp

[
−(P +M)

∫
1

τ
dt

]
. (48)

From equation (27), we can compute the expression∫
1

τ
dt =

1

2M
ln

(∫
1

f
dt+

C1

2M

)
+ C3, (49)

which leads to

g = C

(∫
1

f
dt+ C4

)m
, (50)
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where C = C2e
C3 , C4 =

C1

2M
and m = −P +M

2M
.

We see from equation (34) that

ξ = Mx+Q

∫
g

f
dt. (51)

From equation (27), one has

τ = 2Mf

[∫
1

f
dt+ C4

]
. (52)

When f and g satisfy (50) for some constant m,C and C4, then by setting P = −M(2m + 1),
we have

η = −M(2m+ 1)u+Q, (53)

and (51), (52), together with (53) define the Lie point symmetry for equation (1). We conclude
the result above as follows.

Theorem 2. If f and g satisfy equation (50) for some constants C, C4 and m, then equation
(1) admits the point symmetry X = τ∂/∂t + ξ∂/∂x + η∂/∂u with τ, ξ and η defined by (51),
(52) and (53), respectively, with arbitrary constants M and Q.

We conclude that equation (1) has Lie point symmetry if the variable coefficients f(t) and
g(t, x) satisfy both equations (46) and (47) or equation (50).

3 Invariant solutions

In this section we consider the special case of the gvcB-eqn (1) and present some invariant
solutions.

We take f(t) = 1 and following theorem 2 we obtain g(t, x) = Ctm. The gvcB-eqn (1) now
reads

ut + Ctmuux − uxx = 0, (54)

where C is a constant. The Lie point symmetries of equation (54) are given by

X1 =
∂

∂x
,

X2 = 2t
∂

∂t
+ x

∂

∂x
− (2m+ 1)u

∂

∂u
,

X3 =Ctm+1 ∂

∂x
+ (m+ 1)

∂

∂u
,

that form a finite Lie algebra L3.

3.1 Symmetry reductions and solution of (54)

Case 1. For the vector X1 = ∂
∂x solving the Lagrange system we have that

u = f(t).

Plugging the above equation into the gvcB-eqn (1) we get f ′(t) = 0 which implies that f(t) = k,
where k is a constant of integration. Thus

u(t, x) = k. (55)

Case 2. Considering the vector X2 = 2t ∂∂t + x ∂
∂x − (2m+ 1)u ∂

∂u solving the associated charac-
teristic equations we obtain the invariants

J1 = t,

J2 =u− m+ 1

Ctm+1
x.
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Hence we have the similarity solution

u =
m+ 1

Ctm+1
x+ φ(t). (56)

Substituting equation (56) into equation (1) we get the first-order ordinary differential equation

tφ′(t) + (m+ 1)φ(t) = 0 (57)

whose solution is given by

φ(t) =
k

tm+1
, (58)

where k is a constant. Consequently, we have the solution to the gvcB-eqn (1) as

u(t, x) =
Ck + (m+ 1)x

Ctm+1
. (59)

The wave profile of the rational solution (59), is given for parameters C = 2, k = 2, and m = 1
recorded with interval 5 < t, x < 10, can be seen in Figure (1).

Figure 1: 3D and 2D solution profiles of (59)

Case 3. Finally from the vector X3 = Ctm+1 ∂
∂x + (m + 1) ∂

∂u solving the characteristic
equations leads to the invariants

J1 =
x√
t
,

J2 =ut
2m+1

2 .

From the above invariants we obtain the invariant solution

u = t−
(2m+1)

2 φ(ξ), ξ =
x√
t
. (60)

Substituting equation (60) into equation (1) we obtain the second-order nonlinear ordinary
differential equation

2φ′′(ξ) + ξφ′(ξ)− 2Cφ(ξ)φ′(ξ) + (2m+ 1)φ(ξ) = 0. (61)

Consequently, the solution of the gvcB-eqn (1) under X3 is u = t−
(2m+1)

2 φ(ξ), where φ(ξ) satisfies

2φ′′(ξ) + ξφ′(ξ)− 2Cφ(ξ)φ′(ξ) + (2m+ 1)φ(ξ) = 0.
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Now, we present the analytical solutions to the ordinary differential equation (61) by employing
the power series method. See for example Liu & Li (2006). Our objective is to find a solution
to equation (61) in the form of a power series with a prescribed structure

φ(ξ) =

∞∑
n=0

anξ
n (62)

with the first and second derivatives of φ(ξ) in (62) given as

φ′(ξ) =
∞∑
n=1

nanξ
n−1,

φ′′(ξ) =

∞∑
n=2

n(n− 1)anξ
n−2. (63)

Substituting the different values of φ(ξ) as expressed in equation (63) into equation (61) ensures

4a2 + 12a3ξ + 2
∞∑
n=2

(n+ 1)(n+ 2)an+2ξ
n + a1ξ +

∞∑
n=2

nanξ
n − 2Ca0a1 − 4Ca1a2ξ

− 2C

∞∑
n=2

[
n∑
k=0

(n− k + 1)akan−k+1

]
ξn + νa0 + νa1ξ + ν

∞∑
n=2

anξ
n = 0, (64)

where ν = 2m+ 1. Comparing coefficients from the above equation we obtain (for n = 0)

4a2 − 2Ca0a1 + νa0 = 0, (65)

and (for n = 1)
12a3 − 4Ca1a2 + a1(ν + 1) = 0. (66)

Generally, for n ≥ 2

an+2 =
1

2(n+ 1)(n+ 2)

[
2C

n∑
k=0

(n− k + 1)akan−k+1 − nan − νan

]
. (67)

Thus,

φ(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 +

∞∑
n=2

an+2ξ
n+2. (68)

Hence, the power series solution of equation (54) is

u(t, x) = t−
(2m+1)

2

(
a0 + a1

x√
t

+
2Ca0a1 − νa0

4t
x2 +

4Ca1a2 − a1(ν + 1)

12t
3
2

x3

+
1

2(n+ 1)(n+ 2)

[
2C

n∑
k=0

(n− k + 1)akan−k+1 − nan − νan

](
x√
t

)n+2
)
, (69)

where ai, (i = 0, 1, 2) are arbitrary constants. Other coefficients an(n ≥ 3) can be successively
determined from the recursion relation (67).

4 Conservation laws

To investigate the conservation laws of the gvcB-eqn (1), we recall some salient features of
conservation laws from Ibragimov (2007).

Consider a PDE
E(x,Q,Q(1), ...,Q(s)) = 0 (70)

with Q dependant and x = (x1, x2) as independent variables. Here Qi = ∂Q/∂xi and Qij =
∂2Q/∂xi∂xj , respectively, denote all partial derivatives of the first and second orders.
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Definition 1. The adjoint equation to (70) is

E∗(x,Q,P,Q(1),P(1), ...,Q(s),P(s)) = 0 (71)

with

E∗(x,Q,P,Q(1),P(1), ...,Q(s),P(s)) =
δ(PE)

δQ
,

where P = P(x1, x2) are new dependent variables, P = P(x) and

δ

δQ
=

∂

∂Q
+

∞∑
s=1

(−1)sDi1 ...Dis

∂

∂Qi1...is

is the Euler operator whereas

Di =
∂

∂xi
+Qi

∂

∂Q
+Qij

∂

∂Qj
+ · · ·

is the total differentiation operator.

Ibragimov in his paper Ibragimov (2007) demonstrated that (71) acquires all symmetries of
(70). The following Lemma will be utilized in our subsequent work.

Lemma 1. Any symmetry

G = ξi(x,Q,Q(1), . . . )
∂

∂xi
+ η(x,Q,Q(1), . . . )

∂

∂Q

of (70) furnishes a conservation law Di(C
i) = 0 for (70) and (71). The components of conserved

vector are specified by

Ci = ξiL+ w

[
∂L
∂Qi

−Dj

(
∂L
∂Qij

)
+DjDk

(
∂L
∂Qijk

)
− · · ·

]
+Dj(w)

[
∂L
∂Qij

−Dk

(
∂L
∂Qijk

)
+DkDr

(
∂L

∂Qijkr

)
− · · ·

]
+DjDk(w)

[
∂L
∂Qijk

−Dr

(
∂L

∂Qijkr

)
+ · · ·

]
+ · · ·

(72)

with w = η − ξjQj and Lagrangian L = PE(x,Q,Q(1), ...Q(s)). For a second-order equation,
(72) becomes

Ci = ξiL+ w

[
∂L
∂Qi

−Dj

(
∂L
∂Qij

)]
+Dj(w)

(
∂L
∂Qij

)
.

We first consider the self-adjoint equations from (1).

Theorem 3. The gvcB-eqn (1) is nonlinearly self-adjoint as long as gx = 0.

Proof. From (1) we have

E∗ ≡ δ(PE)

δQ
= ft(t)P + f(t)Pt + gx(t, x)QP + g(t, x)QPx + Pxx.

We consider P = ϕ(t, x,Q) in such a way that (1) turns into nonlinearly self-adjoint. Thereby,
we suppose

E∗ |P=ϕ(t,x,Q)= Λ(t, x,Q,Q(1), ...)E ,
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where

Pt = Dt[ϕ(t, x,Q)] = ϕQ.Qt + ϕt,

Px = Dx[ϕ(t, x,Q)] = ϕQ.Qx + ϕx,

Pxx = Dx(Px) = ϕQ.Qxx + ϕQQ.Q2 + 2ϕxQ.Qx + ϕxx.

Straight forward computations reveal that Λ = ϕQ = 0, and so

ft(t)ϕ+ f(t)ϕt + gx(t, x)Qϕ+ g(t, x)Qϕx + ϕxx = 0. (73)

Since (73) is true for every t, x and Q, we get

gx(t, x)ϕ+ g(t, x)ϕx = 0

and
ft(t)ϕ+ f(t)ϕt + ϕxx = 0.

The calculations reveal that for gx = 0, we get ϕ = Kf(t) 6= 0 for a constant K. This completes
the proof.

Using Lie point symmetries acquired in Theorem 1 and invoking Lemma 1, we gain conserved
vectors (C1, C2), which solves

(
DtC

1 +DxC
2
) ∣∣∣∣
E=0,E∗=0

= 0.

Case 1. f , g are constants
We employ Lemma 1 to gvcB-eqn (1), by considering f = g = 1. This yields

ut + uux − uxx = 0 (74)

and its adjoint equation is
vt + uvx + vxx = 0. (75)

By using Maple the Lie point symmetries of (74) are

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 = t

∂

∂x
+

∂

∂u
,

Γ4 = 2t
∂

∂t
+ x

∂

∂x
− u ∂

∂u
, Γ5 = t2

∂

∂t
+ tx

∂

∂x
+ x

∂

∂u
.

Consider the symmetry Γ1 = ∂/∂t. Following the paper Ibragimov (2007), the conserved
vector associated to Γ1 is

C1 = v(uux − uxx), C2 = v(utx − uut) + utvx.

Due to the presence of the arbitrary solution v of the adjoint equation (75), we gain infinitely
many conservation laws of system (74) and (75).

Similarly, for Γ2 = ∂/∂x, associated conserved vector becomes

C1 = −vux, C2 = vut + vxux.

Likewise, one can obtain conserved vectors corresponding to the other symmetry operators Γ3,
Γ4 and Γ5.

Case 2. f = 1, g = tx
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Now apply Lemma 1 to

ut + txuux − uxx = 0 (76)

along with its adjoint

vt − tuv − txuvx − vxx = 0. (77)

For this case, (76) has the symmetry

Y1 = 2t
∂

∂t
+ x

∂

∂x
− 4u

∂

∂u

and the associated conserved vector is

C1 = (2tu+ 2t2xuux − 2tuxx + 4u+ 2tut)v, C2 = (xut − 4txu2 + 5ux)v + (4u+ xux)vx.

Case 3. f(t) = t, g = 1

We apply Lemma 1 to the equation

tut + uux − uxx = 0 (78)

in conjunction with its adjoint equation

v + tvt + uvx + vxx = 0. (79)

Equation (78) has the symmetries

S1 = t
∂

∂t
, S2 =

∂

∂x
, S3 = ln t

∂

∂x
+

∂

∂u
,

S4 = t ln t
∂

∂t
+
x

2

∂

∂x
− u

2

∂

∂u
, S5 = t(ln t)2

∂

∂t
+ x ln t

∂

∂x
+ (x− u ln t)

∂

∂u
.

For S1 = t ∂/∂t, associated conserved vector becomes

C1 = tv(uux − uxx), C
2

= (utx − uut)tv + tutvx.

Likewise, one can obtain conserved vectors corresponding to the remaining symmetry operators
S2, S3, S4 and S5.

Case 4. f(t) = t, g = tx

Let us apply Lemma 1 to the equation

tut + txuux − uxx = 0 (80)

whose adjoint equation is

v(1 + tu) + tvt + txuvx + vxx = 0. (81)

For this case, equation (80) has the symmetry

U1 = t
∂

∂t
− u ∂

∂u

and its associated conserved vector gives

C1 = tv(txuux − ut − uxx), C2 = (ux + tutx − txu2 − t2xuut)v + vx.
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5 Conclusion

We studied the gvcB-eqn (1), which had two functions f(t) as well as g(t, x) that are arbitrary.
We performed symmetry classification and found distinct functions f and g for which equation
(1) admitted Lie point symmetries. Then for each case we found conservation laws by calling on
the conservation theorem owing to Ibragimov. Conservation laws are very significant in investi-
gating differential equations as they can be employed to determine the integrability of differential
equations, checking the sustainability of methods for obtaining numerical solution, determine
exact solutions for differential equations, etc. Our future work will involve constructing analytic
solutions to differential equations that are achieved in this work for various cases for f(t) and
g(t, x).
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